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Interior Noise Studies for Single- and Double-Walled
Cylindrical Shells

Earl H. Do well*
Princeton University, Princeton, N.J..

The modal theory of acoustoelasticity is applied to the determination of the sound levels caused by a
prescribed external sound excitation which is transmitted through a cylindrical shell. A circumferential pseudo-
traveling pressure wave excitation is studied as representative of a propeller sound field. It is shown how other
excitations such as point mechanical loading, plane wave, and reverberation random may be synthesized by
superposition of circumferential waves. Representative numerical results illustrate the importance of structural
and acoustic frequency matching in the determination of interior sound levels and clarify the role of the cylin-
drical shell ring frequency. An exploratory study of a double-wall geometry is conducted.

I. Introduction

W ITH the recent interest in fuel-efficient aircraft, the
turboprop has received renewed attention. However,

one of its potential disadvantages is a higher level of external
and, hence, internal noise. For several years* Princeton, under
grants from NASA Langley Research Center (NASA Grant
NSG 1253), has been concerned with the response of struc-
tures to prescribed noise field. Recently, a theoretical model
has been developed that is capable of predicting the interior
noise for any structural model surrounding an acoustic cavity
subjected to any prescribed exterior noise field.1 Most
recently, a computer code has been written and exercised to
predict analytically the interior noise for cylindrical shell
models of aircraft fuselage for prescribed harmonic (pure
tone) exterior noise fields. Included in the theoretical model,
as it has been developed, are: 1) detailed structural and in-
terior space geometrical and sound-absorbing parameters; 2)
pressurization; 3) a distributed pseudo-traveling wave
acoustic loading representative of an exterior noise field due
to a propeller; and 4) both open and closed cavity ends.

The structural wall and acoustic cavity are described in
terms of their natural modes; hence, the analytical model is
reduced to a system of acoustic-structural (acoustoelastic)
spring-mass-damper oscillators.

In Sec. II, the basic analytical capability is described, in-
cluding numerical results for a simple isotropic cylinder
representation of a turboprop aircraft fuselage with a
traveling wave exterior noise field. In Sec. Ill the model of
Sec. II is simplified to consider a mechanical point excitation.
Also considered in Sec. Ill is a uniform spatial excitation for
its relevance to the discussion of Sec. IV. In Sec. IV, it is
shown how a plane wave harmonic excitation may be
represented as a summation of circumferential waves, thus
allowing the analytical model of Sec. II to be used. No
numerical results are presented for these cases; however, no
difficulty is anticipated in modifying the existing computer
code to obtain such numerical results. Also in Sec. IV, using
the concepts of power spectral density and transfer function
for sinusoidal inputs, it is shown how the basic analytical
model of Sec. II may be used for a random exterior noise
field. Again, the existing computer code may be extended to
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include random inputs. Section V contains the principal
conclusions of the study.

II. Mathematical Analysis
The basic analytical approach as well as detailed

mathematical results are described in Sec. II.A for a single
isotropic cylindrical shell under a pseudo-traveling wave
circumferential pressure load which represents the external
pressure field due to a rotating propeller. The analysis is
extended subsequently to include the effects of a double wall.
The next stage in the development of the theoretical model
would be to include the effects of rings and longitudinal
stiffeners on the shell dynamics. When an orthotropic shell
assumption will suffice, one need only replace the formula for
the frequencies of an isotropic shell by its orthotropic
counterpart.

In Sec. II.B, numerical results are presented for a
representative baseline configuration. Convergence and trend
studies are also reported.

Analysis
Our basic goal is to develop the equations of motion for

two concentric cylindrical shells with a shallow annular cavity
between them (double wall) and a large interior cavity (air-
craft cabin). Any (specified) external pressure loading may be
considered, although the primary focus is a circumferential
pseudo-traveling wave loading representative of a propeller
acoustic source.

In pursuing this goal, we consider a hierarchy of models
with increasing realism, but also, increasing analytical
complexity. These may be identified by their treatment of the
structural cylindrical shells and the acoustic cavities. They
are: 1) cylindrical shells: a) isotropic, b) orthotropic, c)
discretely stiffened, and 2) acoustic cavities: a) inner cavity
only, and b) inner and annular cavity. The theory of Ref. 1
and available results for cylindrical shells2"4 and cylindrical
acoustic cavities5'6 are sufficient to allow us to write the
equations of motion.

In the paper, the detailed equations of motion are written
first for the simplest model—a single isotropic cylinder with a
single cavity. Bhat and Mixson's model7 (after Cockburn and
Jolly8) for an open-ended cylindrical cavity is similar, except
that the longitudinal acoustic modes may differ. Here we
consider both closed- and open-ended cavities. Also, we allow
for internal absorption material on the walls and ends of the
cavity after Ref. 1.

We briefly indicate below how the more complete models
can be constructed in detail.

1) Cylindrical shells:
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b) orthotropic—simply requires a somewhat more
elaborate formula for the structural natural frequencies.

c) discretely stiffened—as a preliminary, requires a
Rayleigh-Ritz analysis for determining structural natural
frequencies using, for example, the isotropic cylinder natural
modes for the primitive modal expansion.

2) Acoustic cavities:
b) inner and annular cavity—the annular cavity is usually

sufficiently shallow that only the lowest (uniform) radial
mode is required. However, in general, this mode will couple
the inner and outer cylindrical shells and these coupled modes
will have to be computed. Subsequently, the double-wall
geometry is considered in an exploratory fashion in this paper
by ignoring the coupling between inner and outer cylindrical
shells. It should be noted that from a standpoint of
minimizing interior noise, it is desirable to have a double-wall
design which minimizes this coupling. Hence, the simplified
model which ignores the coupling may prove useful for design
analysis.

See Ref. 1 for a complete list of symbols and the
development of the following equations from fundamental
principles.

Definitions

P = Poco^(pnFn/Mn) acoustic pressure (1)

acoustic generalized mass (2)

(3)

(4)

^m wall deflection

Mm = \\l/2
mdA wall generalized mass

„ l(FHF,/Za)dA absorption coupling coefficient (5)

Lnm = —— $Fn\I/mdA acoustoelastic coupling coefficient (6)
AF

Q^ = - \pE\//mdA wall-generalized force

Acoustic Modal Equation

(7)

Wall Modal Equation

n- +QE
m

acoustoelastic coupling term (9)

The above formulation applies to any structural wall en-
closing any acoustic cavity with any external excitation
subject to broad assumptions of linearity and small per-
turbations.1 We now turn to the specific geometry and
loading shown in Fig. 1, i.e., a circular cylindrical shell with
an external pressure load. The load is assumed to be simple-
harmonic in time and is a pseudo-traveling wave in the cir-
cumferential direction. It is taken as constant over some
limited span in the axial direction. The frequency and
wavespeed are related to the propeller rpm and blade radius as
follows. The frequency is equal to the blade rpm (in Hertz)
times the number of blades. The wavespeed is equal to the
frequency times the blade radius.

The determination of o ,̂ um is discussed separately in
Appendices A and B. The natural modes are:

ABSORPTION -
MATERIAL 2R0

\-TRAVELINGWAVE
PRESSURE LOAD,p0

Fig. 1 Problem geometry.

Fn=cos(nxirx/a)J

structural

acoustic
sinnfid

The expression for Fn assumes a closed-end cylindrical cavity.
For an open end, the cosine term in x is replaced by a sine
function.

Pseudo-Traveling Wave Pressure Load

pE=p0Re e^[(~(Roe/y^ (10)
00

=P0eM £ Cm ,«*»•• (11)
m0 = -oo

where K is the wavespeed and the Fourier coefficients are
determined in the usual way as

(-7)m0sinQ7r uR0f\ *• ' n _ U

(12)

In Eq. (1) and hereafter, it is understood that the desired
result is the real part of a complex number. Because of
linearity, and orthogonality of the eimd0, one may consider
each term in Eq. (11) separately. Hence, by Fourier
decomposition in 0, one reduces the number of spatial in-
dependent variables from r, x, 6 to r, x. Thus, me (from
cylindrical structure) and ne (from cylindrical cavity) are the
same. Both positive and negative md are included. Note that
Eq. (10) is not a classical traveling wave and, in particular,
that pE is discontinuous at B — IT, — TT. Of course, any external
load can be expressed as a Fourier series, cf., Eq. (11), with
appropriate coefficients C .

Term Appearing in the Modal Equations

?i<*t r
Jx

sin- -dx(2irR0) (13)

(14)

We assume that the absorption is uniform around the cir-
cumference for simplicity; otherwise, the circumferential
cavity modes are coupled. Thus,

Cnr=

cos —— cos—— dxa a (15)
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A similar calculation for absorption on one or both ends of
the cylindrical cavity can be carried out.

where

1 = 1 sir
Jo

-dx-2TrR0=a/2>2<jrR0 (16)

a (*

o\o

R

(17)

where

=7 for for n>l

Steady-State Solution of Modal Equations
Neglecting the acoustoelastic coupling term in Eq. (9) (this

should be a good assumption when one has enough ab-
sorption material to provide well-damped acoustic
resonances,! a generally desirable design practice),

Mm (q =ReQE
mei»<

Let

(18)

Then, solving Eq. (9) using Eq. (18) gives

Mm

Mm

(19)

where m denotes a double subscript mx and me.
Using Eqs. (18) and (8) (neglecting coupling between

acoustic modes due to absorption, which is reasonable for
modest absorption9), one obtains

AAC

and n denotes triple subscript nr, nx , and ne .

Calculation Procedure
Determine otnfme=knrneR0 from Ref. 6. See discussion in

Appendix A.

Specify c0,R0t a.

Determine otf2 = c2
0 [ * + ( ) * ] .K0 a

Determine u2
m from appropriate structural theory. See

discussion in Appendix B.

Specify «, V, andp0. Determine Cme from Eq. (12).

Specify xa -xb. Determine Q% from Eq. (13).

Determine Lnm from Eq. (14).

Specify XA , xAb> Za. Determine Cnr from Eq. (15).

Determine Mm from Eq. (16).

Determine M* from Eq. (17).

Specify wm . Determine <?* and q*m from Eq. (19) and w
from Eq. (3).

Specify f^. Determine P% and P'n from Eq. (22) and/? from
Eq.(l).

Note the following relations hold:

Absorption Area:

Flexible Wall Area:

Cavity Volume:

Let

Then, solving Eq. (20) using Eq. (21) gives

and

(20)

(21)

(22a)

(22b)

To show this is so, one returns to Galerkin's method (or
Rayleigh-Ritz) for the structure and Green's theorem for the
acoustic cavity. l In both cases, one has the product of modes
giving a quadratic form.

Double- Wall A nalysis
Here we briefly outline the extension to a double-wall

geometry; T denotes top or outer cylinder and B denotes
bottom or inner cylinder.

The equations of motion are (cf., the above analysis and
Ref. 1)

outer cylinder

B 1 — _
~

T B
n nm

inner cylinder

(23)

(24)
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0 V Cnr
1000

AB

+ V]— F-LB
mqB

m annular cavity between cylinders (25)
m

Premise: Except for ne = Q mode, there is very little
acoustoelastic coupling.

Hence, a sequential solution may be used as follows:
1) Compute qT

m (ignoring Pn and q^) from Eq. (23).
2) Compute P,, (ignoring qB

m) from Eq. (25).

Use

(Ro-d/2) c0,V=d27r(R0-d/2) (26)

where d is the gap between the inner and outer walls. This
should be accurate when d/2irR0 < 1.

3) Compute qB
m from Eq. (24).

Use

(27)

4) Using q^ from 3, iterate from 2, if necessary.
5) Compute interior sound field using q^ in the usual way,

as in the analysis of a single-wall case.

Numerical Results
A computer program has been written to obtain solutions

from this mathematical model. An example has been in-
vestigated and some highlights from the numerical results are
discussed below. The following baseline parameters are used
in the example (nominal case). See Refs. 10 and 11 for
representative aircraft values.

Cylindrical shell (fuselage)
material
modulus of elasticity
density
thickness
radius
length
pressure differential

Cavity (fuselage interior)
speed of sound (air)
density (air)

absorption material
length of cylindrical shell covered
impedance/characteristic air

impedance

aluminum
107 psi

0. lib/in.3

0.036 in.
74 in.
180 in.
8.5 psi

1117ft/s
0.002378

slug/ft3

0-180 in.

1

External pressure loading (traveling circumferential wave)

magnitude
length of cylindrical shell covered
propeller blade radius
various frequencies (propeller rpm

in Hz times number of blades)
velocity of traveling wave pattern

is taken equal to blade radius
times frequency

Ipsif
90-100 in.
60 in.

tl psi is selected as an arbitrary reference. Because the theoretical
model is linear, the cylindrical shell deflection and internal cavity
pressure level are proportional to the magnitude of the external
pressure loading. 1 psi = 170 dB.

nx=mx= I
n r=l
• CYLINDRICAL SHELL
x ACOUSTIC CAVITY

a)
0 4 8

lOOOr

f.Hz 500

n r = l
• CYLINDRICAL SHELL
x ACOUSTIC CAVITY

b) ne

Fig. 2 Natural frequencies vs mode number, a) First axial mode; b)
third axial mode.

Figures 2-5 show some of the important results obtained for
this example. In Fig. 2, the natural frequencies of the
cylindrical shell and acoustic cavity are plotted vs cir-
cumferential mode number ne. The first axial mode number
of the cylindrical shell and the first axial and radial mode
numbers of the acoustic cavity are shown in Fig. 2a, as these
are the dominant ones. In Fig. 2b, analogous results for the
third axial mode are also shown.t In the subsequent results
shown in Figs. 4 and 5, the contributions of all of the first
three axial and radial mode numbers are considered as well as
all of the first 41 circumferential modes, ne = -40—+40.
Figure 2 allows one to anticipate the dominant cir-
cumferential modal contributions to the interior sound field.
For example, one would expect the fundamental (lowest

$The second axial mode proves less important than the third,
presumably because the external load is near the fuselage center which
is a node-line for this mode.
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Fig. 3 Fourier coefficients of external pressure load.

10°

INTEGERS ARE VALUES OF nfi

7
6*

01. RING
FREQUENCY

*I7

100 200 300 400 5OO
f.Hz

•25

NOTE: Structural damping assumes Cmfm = constant .27
where as £, f, = .OIx(OOHz .

Fig. 4 Cylindrical shell deflection vs external pressure frequency.

frequency) shell mode to be important, in this case 82.8 Hz at
ne = 4. Also, one would expect significant sound levels when
an acoustic and structural frequency are in close proximity for
some nQ, e.g., 2 and 3 and 90-139 Hz from Fig. 2a and,
similarly, 290-330 Hz from Fig. 2b.

Another important indicator of a significant cir-
cumferential mode is the Fourier series representation of the
traveling wave external pressure load. The Fourier coef-
ficients of this series are shown in Fig. 3 for the present
example. Two Fourier coefficients are shown for each value
of ne=0 corresponding to the complex exponential
representation of the pressure load [see Eq. (12)]. As can be
seen, ne = 1 makes the largest contribution to the external
pressure load Fourier series. For large ne, the Fourier com-
ponents decrease in inverse proportion to ne.

Now turn to Figs. 4 and 5. The spatial rms deflection and
spatial rms internal pressure/external pressure magnitude are
shown as a function of external pressure load frequency. The
external pressure is simple-harmonic in time and travels about
the cylindrical shell. Results were computed with the external

•15

5 8

RING FREQUENCY

25

_J
100 200 300 400 »500 600

f.Hz 27- ^
29-

Fig. 5 Ratio of internal/external pressure vs external pressure
frequency.

pressure frequency set to various structural resonant
frequencies (corresponding to ne = 0-^34 for mx = 1) since this
would be a maximum response condition. External excitation
at acoustic resonant frequencies gives a smaller response for
the absorption material used in the present example. As
expected, the important circumferential modes identified
from Figs. 2 and 3 do indeed lead to the largest structural
deflections and internal sound levels in Figs. 4 and 5.

An important result is that for the above excitation, the ring
structural frequency (423 Hz at nd - 0), there is a rapid drop in
structural and acoustic response levels. This is because
structural and acoustic mode frequency mode matching or
near matching is unlikely except at much higher frequencies.
This result, however, may not carry over to stiffened cylin-
drical shells.

Another important conclusion, implicit in the above, is that
for a single-frequency (pure tone) excitation, it will be
relatively easy to identify the dominant modes in the response.
However, for a near^resonant response condition, the
response levels will be sensitive to small differences between
the excitation and structural natural frequencies and thus
difficult to predict accurately.

Convergence
A convergence study has been carried out for /= 265.4 Hz

using various numbers of modes. The results are shown in
Table 1. The results indicate that three radial modes and one
axial mode give accurate results. The number of cir-
cumferential modes needed, of course, varies with excitation

Table 1 Convergence study

Prms/Po
0.254
0.254
0.238
0.113
0.248
0.106

K)max
3
3
3
1
5
1

(MX 'max
3
3
1
3
1
1

(^)max
9
9
9
9
9
9

CMmax
3
1
1
1
1
1

/=265.4 Hz baseline case (nominal)
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Table 2 Effect of damping and pressure differential

/= 265.4 Hz, except as noted
(ne = 1 resonant frequency for/? = 8.5 psi)

s,in.

Nominal
Change in structural

damping form
f= 0.01 to 0.02

Change in pressure
differential from
A/? = 8.5 to 0 psi

0.368

0.184

0.252
0.373a

Prms/PQ

0.254

0.127

0.173
0.258a

a/= 264.3 Hz (A20 = 1 resonant frequency for A/7 = 0 psi)

Table 3 Effect of open- vs closed-end and placement
of absorption material

* Wrm$,in
• Prms/Po
f * 265.4HZ
(n^ I SHELL RESONANCE)

NOMINAL

100
XBA ~ XAA .in

Fig. 6 Cylindrical shell deflection and internal sound pressure level
vs length of cylinder covered by absorption material.

Nominal (closed end)
Open end
Absorption along cylinder and

on ends
Absorption on ends only
/= 265.4 Hz baseline case

0.254
0.193

0.210
0.351

frequency. The present results, which were obtained using up
to 41 circumferential modes appear well-converged for the
frequency range covered.

Trend Studies
Damping: The response at resonance is, as expected, in-

versely proportional to structural damping (see Table 2).
Pressure Differential: A loss of pressure differential can

cause a significant reduction in response by detuning a
structural response by changing the structural natural
frequency. However, if the excitation frequency is retuned to
the new natural frequency, the response will be increased
(although only slightly in the example shown in Table 2).

Cavity End Conditions and Absorption: Table 3 compares
the results from closed- and open-ended cylinders. Also
shown is a comparison of results for various placements of
absorption material. The results speak for themselves. In Fig.
6 results are shown for various portions of a cylindrical shell
covered by absorption material. As expected, the structural
response is insensitive to this parameter, but the interior noise
levels decrease with an increase in absorption material.

External Pressure Load Extent: As expected and as shown
in Fig. 7, the greater the extent of the external load
distribution (for a given magnitude of pressure), the larger the
structural response and interior noise.

Double Wall: A double-wall example has also been
examined. The acoustoelastic coupling between the two walls
has been ignored however. Except for the ne=0 mode, this
should be satisfactory as long as the inner wall deflection is
substantially less than the outer wall deflection.l Of course,
this latter condition is exactly what one would like from the
standpoint of good acoustical design. The physical
parameters for the nominal case are those of the baseline
model, except that the radius of the inner shell is 71 in. (hence
the distance between inner and outer walls is 3 in.), there is no
pressure differential across the inner wall, and the absorption
material covers the outer shell walls and end, but the inner
shell end only.

The various acoustic and structural natural frequencies are
shown in Fig. 8. The inner and outer wall deflections are
shown in Fig. 9 for various excitation frequencies (chosen to
correspond to outer wall structural natural frequencies).
Recall that in the present solution procedure it is assumed that

* Wrms,in

* Prms/Po
f =265.4 Hz
(n.= ISHELL RESONANCE)

100
X B - X A , i n

Fig. 7 Cylindrical shell deflection and internal sound pressure level
vs length of cylinder covered by external pressure.

300

f.Hz 200

100

x ANNULAR CAVITY

x INNER CAVITY

•OUTER SHELL

• • INNER SHELL

> 2 4 n 6 8

Fig. 8 Natural frequencies vs circumferential mode number.
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OUTER SHELL x SINGLE WALL
• DOUBLE WALL
«> f«265.4
x .351
• 1.85

100 200 300 f.Hz
200 300

f.Hz

Fig. 9 Cylindrical shell deflections vs external pressure frequency.
Fig. 10 Ratio of internal/external pressure vs external pressure
frequency.

Table 4 Double wall design study

Case

Nominal

Pressure differential
on inner cylinder

Pressure differential
on inner cylinder
hB =0.072 in.

Pressure differential
on inner cylinder
hB =0.072in.,tf=6in.

Pressure differential
on inner cylinder, d= 6 in.

Pressure differential on
inner cylinder , d = 6 in . ,
P5=0.051b/in.3

Pressure differential on
inner cylinder , d = 6 in . ,
pB=0.21b/in.3

/,HZ(,
82.77
86.26
93.64

108.89
125.56
130.34
142.75
265.4
423.08

11.49
14.27
18.86
26.49
39.93
66.11

124.4
264.4
422.8

11.49
14.27
1S.86
26.49
39.93
66.11

124.4
264.3
422.8
124.4
264.3
422.8
124.4
264.3
422.8
124.4
264.3
422.8
124.4
264.3
422.8

',)

(4)
(3)
i(5)
(6)
(7)
(2)
(8)
(1)
(0)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
d)
(0)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
(D
(0)
(2)
d)
(0)
(2)
d)
(0)
(2)
d)
(0)
(2)
(1)
(0)

rms
w r,in.

0.121
0.164

0.789 x 10 -1

0.544 x 10 -1

0.622 x 10 -1

0.233
0.348 x 10 -1

0.368
0.443x10-2

0.387
0.362
0.313
0.269
0.234
0.211
0.248
0.373

0.438 x 10 -1

0.387
0.361
0.313
0.269
0.234
0.211
0.248
0.373

0.438 x 10 -1

0.248
0.373

0.438 x 10 -1

0.248
0.373

0.438 X 10 -1

0.248
0.373

0.438 X 10 -1

0.248
0.373

0.438 x 10 -1

rms
WB, in.

0.189 x 10 -1

0.475 X 10 -1

0.839x10-2
0.622x10-2
0.877 x 10 -1

0.190
0.625x10-2

1.336
0.343x10-2
0.111x10-3
0.227x10-3
0.585x10-3
0.197x10-2
0.883x10-2
0.488 x 10 -1

0.376
0.629

0.525X10-2

0.106x10-3
0.212x10-3
0.577x10-3
0.197x10-2
0.898x10-2
0.537 x 10 -1

0.571
0.365

0.241x10-2
0.472
0.212

0.320X10-2

0.719
0.386

0.508x10-2
0.473x10-
0.321x10-
0.815x10-
0.264x10-
0.183x10-
0.361x10-

Pr^Po

0.236 X 10 ~2

0.943x10-2
0.207x10-2
0.390x10-2
0.491x10-2

0.101
0.300X10-2

0.185X10-1

0.134x10-2
0.123 X 10 ~6

0.302 x 10 ~6

0.115X10-5

0.852X10-5

0.131x10-3
0.43X10-2

0.213
0.898

0.155X10-2

0.794 x 10 ~7

0.215X10-6

0.968 x 10 ~6

0.822X10-5

0.133x10-3
0.469X10-2

0.323
0.525

0.763x10-3
0.302
0.355

0.104x10-2
0.460
0.646

0.165x10-2
0.307 X 10 -1

0.534 X 10 -1

0.366x10-3
0.164X10-1

0.311X10-1

0.106x10-3
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the inner shell deflections are much less than the outer shell
deflections. Clearly, not all results in Fig. 9 satisfy this
requirement, e.g.,/= 125 Hz. As one would expect in such a
case, the interior acoustic pressure is larger for the double-
wall geometry than for the single wall. See Fig. 10, where the
double- and single-wall results are compared. Hence, for such
an excitation frequency, a double wall actually makes matters
worse.

At least in retrospect this behavior can be explained by
reference to Fig. 8. There we see that near/= 125 Hz the inner
(bottom) and outer (top) walls have very close natural
frequencies as does the inner cavity. Clearly, this would be a
bad design if the excitation frequency is near/= 125 Hz.

Design Analysis for a Double Wall
A simple example of how one might use the present

analytical model in a design procedure has been carried out.
The results are presented in Table 4. Several cases are con-
sidered in turn; in each case, the exciting frequencies are set
equal to the outer cylinder resonant frequencies for the first
axial mode, mx = 1, and the ne =0 to ne = 8 circumferential
modes. In an actual design study, one would need to insure
that all circumferential and axial modes are included in the
anticipated range of the excitation frequencies.

The spatial rms top WT and bottom wfl cylinder deflections
and inner cavity pressure /?rms are given in Table 4. Case 1 is
the nominal one previously studied. The second case is for the
pressure differential applied to the inner (bottom) rather than
outer (top) cylinder. As may be seen, Case 2 has generally
lower interior sound levels. Case 3 is for a doubling for the
inner cylinder thickness and again the effect is generally
favorable. Case 4 doubles the gap distance between cylinders
and again the effect is favorable. For brevity, only the ne =0,
1, 2 resonant frequencies are considered. Case 5 returns the
inner thickness to its original smaller value, hB-0.036 in.,
and here, as expected, the effect is to increase the interior
sound level. Case 6 decreases the inner cylinder mass by a
factor of two, but maintains the same stiffness level (in
practice, this would be achieved by a stiffened shell geometry)
and the effect is dramatically favorable. A doubling of the
inner cylinder mass, Case 7, is also dramatically favorable.

In all the above cases, it is of interest to note that where low
interior sound levels are achieved, the inner cylinder
deflection is much smaller than the outer cylinder deflection.
In simple terms, if this is not true, it is better not to have an
inner cylinder at all! Also, all of the preceding results are
consistent with the hypotheses that 1) for two cylinders of
comparable properties, it is more effective to stiffen (by
pressure differential or increase thickness) the inner cylinder
rather than the outer one and 2) is it very effective to separate
(detune) the inner and outer cylinders by changing their
resonant frequencies, e.g., by mass changes.

III. Mechanical Point Excitation
and Uniform Spatial Excitation

These simpler excitations are of interest because they allow
a more direct experimental assessment of any theoretical
model and also serve as building blocks for more complex
random excitations. See the discussion in Sec. IV with respect
to the latter.

Mechanical Point
A mechanical point excitation can be represented by

pE=F0d(x-xF)5(R0d)e« (28)

where F0 is the point force magnitude, 5 is a delta function,
and x = XF, 6 = 0 is the location of the point force.

This point force itself may be expressed as a summation of
traveling waves as follows:

me = -00,00 (29)

where C = 1 for all me
Thus, the generalized force needed for the analysis of Sec.

His:

(30)

Uniform Spatial
A uniform spatial excitation can be represented by

pE=p0Re(ei"<] (31)

This may be expressed as a summation of traveling waves as
follows:

=-oo, oo (32)

where Cm& =1 for me =0 and is otherwise zero. Thus the
generalized force needed for the analysis of Sec. II is:

QE
m = - (33)

Hence, the uniform spatial excitation is also treatable by the
method of Sec. II.

Numerical results have been obtained but are omitted for
the sake of brevity.

IV. Plane Wave and Idealized Reverberation
Random Driving Forces

The response to a sinusoidal excitation, either cir-
cumferential waves or point excitation, may be used as a basic
building block to construct responses for these two types of
driving forces.

Plane Wave
Denote Cartesian coordinates by x,y,z and polar coor-

dinates by r,Q,z, where z is the axis along the centerline of the
cylindrical shell. A plane wave pressure along the x axis can be
represented by

(34)

(35)

or, in polar coordinates,

Pp=p0exv[iu(rcos0-c0t)/c0]

where w is the frequency of the incoming wave, c0 the speed of
sound, and p0 the wave magnitude. Following Morse and
Ingard,5 the latter may be expressed as a Bessel-Fourier
series.

00

PP=PoWo(*r) + £ imcosmdJm(kr)]ei«t (36)

where k = u/c0 and m = me.
The total pressure acting on the cylindrical shell is the sum

of the preceding incoming wave and the scattered wave. After
some mathematical analysis, it is shown in Ref. 5 that the
scattered wave pressure is given by

(Jm (kr) + iNm (kr) (37)
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where

p0Jj(kR0)
A° ~ [ J 1 ( k R 0 ) + i N 1 ( k R 0 ) ]

-Jm-i (kR0) (kR0) -iNm_1 (kR0)]

The total pressure acting on the cylindrical shell is thus

PE=Pp+Ps at r = R0 (38)

This assumes that the cylindrical shell motion does not
significantly affect the scattered wave. This assumption may
be worthy of further study.

pE is now expressed by Eqs. (3-5) as a sum of cir-
cumferential waves, and the analysis is thus reduced to the
case previously treated in Sec. II. It will be of interest to
consider responses with and without the scattered wave in-
cluded to determine the significance of its effect.

Idealized Reverberation Random
Here is considered an exterior noise field which is uniform

in space and random in time. From the basic theory of ran-
dom processes, 12 it is known that

5) In design analysis, the method might proceed as follows.
From a knowledge of the excitation frequencies, and principal
circumferential harmonics, the most important acoustic
cavity and structural modes are identified. A worst case
assumption is made and the interior noise levels are calculated
by equating the excitation frequency to the structural and
acoustic resonant frequencies in the frequency range of in-
terest. If noise levels are excessive, then acoustic absorption is
added to suppress responses at acoustic resonances or
structural mass, stiffness or damping is added to suppress
response at structural resonances. Double-wall effects may
also be helpful.

Appendix A:
Acoustic Natural Modes of Cylindrical Cavities

Assume

Then,

from

p(r,0,x)=R(r)e(0)X(x)

, n =0,7,2,...

(Al)

(A2)

(A3)

= \Hwp (x,j;;co) I '*„ («) (39)
dX

= 0 (rigid ends)

where $ww is the power spectral density of the deflection at
point jc, 0; $pp(u) is the power density of the pressure due to
the exterior idealized reverberation random noise field; and
Hwp is the transfer function which is the response to a unit
exterior sound pressure that is distributed uniformly in space
and is sinusoidal with frequency o> in time. An expression
similar to Eq. (6) can be written with the interior sound field
pressure replacing the cylindrical shell deflection.

The transfer functions needed to compute the interior
sound field (and cylindrical shell deflection) are precisely
those responses discussed in Sees. II and III for a uniform-in-
space and sinusoidal -in-time exterior sound field.

V . Concluding Remarks
1) The feasibility of conducting low-frequency (below 1000

Hz) noise studies using structural and acoustic modal analysis
has been demonstrated. Any prescribed external pressure
excitation may be treated. A circumferential wave excitation
was given special attention because of its ability to model a
propeller noise field and also because it may serve as a basic
Fourier building block for representing other external sound
fields including point, plane wave, and random excitation.

2) The interior noise levels calculated can be explained by
reference to matching or mismatching of exciting and
structural/acoustic natural frequencies. A knowledge of the
circumferential Fourier components of the external load is
also useful and important in anticipating and/or interpreting
the results.

3) Double walls are not necessarily beneficial, though it is
the exceptional excitation frequency where they lead to an
increase in interior noise levels .

4) For (pure tone) single-frequency external excitation, it
will be difficult to predict interior noise levels accurately due
to sensitivity of the results to small differences between ex-
citation and structural/acoustics natural frequencies for near-
resonant response conditions. However, the analytical model
should still be use. J in making qualitative design changes and
decisions and providing insight and understanding in planning
and interpreting experiments.

and

^
9= e ,,,...

COS/Z00

from the periodicity requirement forpin 6 and

R=AJn9(knrr)+BYn$(kn_r)

with

(A4)

(A5)

(A6)

From boundary conditions on R, the eigenvalues of knr are
determined and, hence, the eigenfrequencies from Eq. (A&).

Complete Cylindrical Cavity
We require that B = 0 in Eq. (A5) so that R is bounded at

/• = 0. The other boundary condition is that

r =0~J'(knR0)=0
dr

(A7)
=RO

The roots of Eq. (A7) define the k .

Annular Cylindrical Cavity
The two boundary conditions are

dR
dr = 0

r=R0,Rj

from which the eigenvalue equation is obtained, i.e.,

.,*(,) =0 (A8)
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The roots of Eq. (A8) are kn^ (see Ref. 13).
The cavity pressure is now expressed as

(A9)

where

where

Am-ct*-m2
e[(l-r)/2]

v)/2}ctme

C=—ivct

(A10)

and for a complete cavity with rigid ends

nx
(All)

Appendix B:
Structural Natural Modes of Cylindrical Shells

From Refs. 2-4, one may obtain expressions for the natural
frequencies com and modal functions \//m of a cylindrical shell.
The latter are:

*m~ a sinme6

where mx = 1,2,3,4,. ..and /ne =0,1,2,3,....

The former may be determined by several different available
shell theories. Two are considered here. The first, and sim-
pler, of these is the Donnell shell theory. It is accurate for me
sufficiently large and, indeed, is often used for all md other
than me = l, including me=Q. For me = \, DonnelPs theory is
known to give less accurate results.2-4 The expression for com
IS 2.

(Bl)

where

and R0 is the shell radius, h the shell thickness, ̂ the modulus
of elasticity, pm the shell density, v is Poisson's ratio, and A/?
is the static pressure differential (positive when interior
pressure is larger than exterior).

There are numerous other, more accurate, shell theories
which differ somewhat in detail, but are broadly similar.
Among these, the theory associated with the name of
Goldenvieser is discussed here. The value of (R0um/cTef) is
calculated from roots of the following determinant2

A B C

-B D E

-C E F

= 0 (B2)

(d2/12){-2(l-i>)a2-me
2}

= -me + ( d 2 / 1 2 ) { - (2-v)oi2me - me
3 }

)2

Lref

Equations (Bl) or (B2) may be used to compute the um which
are needed in the text depending upon the accuracy required.
In the numerical examples of the present paper, Eq. (Bl) was
used.
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